Every \mathcal{M} -additive set is \mathcal{E} -additive: application of fractal dimensions

Ondřej Zindulka

Czech Technical University Prague

Winter School in Abstract Analysis Hejnice 2009

Additive properties

Objects:	$X \subseteq 2^{\omega}$
Adding sets:	$X+Y=\{x+y:x\in X,\ y\in Y\}$
	(addition coordinatewise modulo 2)
Measure on 2^{ω} :	The usual product measure
Metric on 2^{ω} :	$d(x,y) = 2^{-n(x,y)}$

Definitions

Additive properties

Objects:	$X\subseteq 2^\omega$
Adding sets:	$X+Y=\{x+y:x\in X,\ y\in Y\}$
	(addition coordinatewise modulo 2)
Measure on 2^{ω} :	The usual product measure
Metric on 2^{ω} :	$d(x,y) = 2^{-n(x,y)}$

Definitions

\mathcal{N}^{*}	$\mathcal{N}\text{-}additive:$	$X+N\in \mathcal{N}$ for each $N\in \mathcal{N}$
\mathcal{M}^{*}	$\mathcal{M} ext{-}additive:$	$X+M\in \mathcal{M}$ for each $M\in \mathcal{M}$
\mathcal{E}^*	\mathcal{E} -additive:	$X+E\in \mathcal{E} \text{ for each } E\in \mathcal{E}$
\mathcal{SN}	strongly null:	$X+M\neq 2^\omega$ for each $M\in \mathcal{M}$

 \mathcal{N}^*

Theorem (Shelah 1995) $\mathcal{N}^* \implies \mathcal{M}^*$

 \mathcal{M}^{*}

 \mathcal{E}^*

heorem (Corollary to Pawlikowski 1995)

 $\mathcal{E}^* \implies \mathcal{SN}$

 \mathcal{SN}

 \mathcal{N}^*

 \mathcal{M}^{*}

 \mathcal{E}^*

Theorem (Corollary to Pawlikowski 1995)

 $\mathcal{E}^* \implies \mathcal{SN}$

 \mathcal{SN}

 \mathcal{N}^{*}

 \mathcal{M}^{*}

\mathcal{N}^*	Nowik, Weiss 2002:
	Definition (DON'T READ IT!)
(T')	$\begin{split} X \text{ is } (\mathbf{T}') \text{ if: } \exists g \in \omega^{\omega} \ \forall f \in \omega^{\uparrow \omega} \ \exists I \in [\omega]^{\omega} \ \exists \langle H_n : n \in I \rangle \\ \bullet \ \forall n \in I \ H_n \subseteq 2^{[f(n), f(n+1))}, \end{split}$
	$ \forall n \in I \ H_n \leqslant g(n), $
\mathcal{M}^*	$X \subseteq \{x \in 2^{\omega} : \forall^{\infty} n \in I \ x \mid [f(n), f(n+1)) \in H_n\}.$
\mathcal{E}^*	
\downarrow	
$\stackrel{\diamond}{\mathcal{SN}}$	

\mathcal{N}^{*}	Nowik, Weiss 2002:
\Downarrow	Definition (DON'T READ IT')
(T')	$\begin{split} X \text{ is } (\mathbf{T}') \text{ if: } \exists g \in \omega^{\omega} \ \forall f \in \omega^{\uparrow \omega} \ \exists I \in [\omega]^{\omega} \ \exists \langle H_n : n \in I \rangle \\ & \bullet \ \forall n \in I \ H_n \subseteq 2^{[f(n), f(n+1))}, \end{split}$
\Downarrow	$ () \ \forall n \in I \ H_n \leqslant g(n), $
\mathcal{M}^*	$X \subseteq \{x \in 2^{\omega} : \forall^{\infty} n \in I \ x \upharpoonright [f(n), f(n+1)) \in H_n\}.$
	Theorem
\mathcal{E}^*	$\mathcal{N}^* \implies (\mathbf{T}') \implies \mathcal{M}^*$
\Downarrow	
SN	

\mathcal{N}^*	Nowik, Weiss 2002:
\Downarrow	Definition (DON'T READ IT!)
(T')	$ \begin{split} X \text{ is } (\mathbf{T}') \text{ if: } \exists g \in \omega^{\omega} \ \forall f \in \omega^{\uparrow \omega} \ \exists I \in [\omega]^{\omega} \ \exists \langle H_n : n \in I \rangle \\ & \forall n \in I \ H_n \subseteq 2^{[f(n), f(n+1))}, \end{split} $
\Downarrow	$ \forall n \in I \ H_n \leq g(n), $
\mathcal{M}^*	$ X \subseteq \{ x \in 2^{\omega} : \forall^{\infty} n \in I \ x \upharpoonright [f(n), f(n+1)) \in H_n \}. $
	Theorem
\mathcal{E}^*	$\mathcal{N}^* \implies (\mathbf{T}') \implies \mathcal{M}^*$
\Downarrow	Question $\mathcal{E}^* \iff (T')???$

 \mathcal{SN}

Theorem (Galvin–Mycielski–Solovay)

X is SN if, and only if:

For any sequence $\varepsilon_n > 0$ there is a cover $\{U_n\}$ of X such that diam $U_n < \varepsilon_n$.

- X is SN
- o_X_*is H*-nul
- $\mathcal{H}^{p}(X) = 0$ for each Haudorff func-

Theorem (Galvin–Mycielski–Solovay)

X is \mathcal{SN} if, and only if:

For any sequence $\varepsilon_n > 0$ there is a cover $\{U_n\}$ of X such that diam $U_n < \varepsilon_n$.

Consequently:

- $\dim_{\mathsf{H}} X = 0$
- $\dim_{\mathsf{H}} f(X) = 0$ for all uniformly continuous f

Definition

X is \mathcal{H} -null $\stackrel{\text{def}}{\equiv} \dim_{\mathsf{H}} f(X) = 0$ for all uniformly continuous f.

- \circ X is SN
- o_X_*is H*-nul
- $\mathcal{H}^{\rho}(X) = 0$ for each Haudorff fun

Theorem (Galvin–Mycielski–Solovay)

X is \mathcal{SN} if, and only if:

For any sequence $\varepsilon_n > 0$ there is a cover $\{U_n\}$ of X such that diam $U_n < \varepsilon_n$.

Consequently:

- $\dim_{\mathsf{H}} X = 0$
- $\dim_{\mathsf{H}} f(X) = 0$ for all uniformly continuous f

Definition

X is \mathcal{H} -null $\stackrel{\text{def}}{\equiv} \dim_{\mathsf{H}} f(X) = 0$ for all uniformly continuous f.

Theorem

- X is SN
- X is \mathcal{H} -nul
- $\mathcal{H}^{g}(X) = 0$ for each Haudorff function g

Theorem (Galvin–Mycielski–Solovay)

X is \mathcal{SN} if, and only if:

For any sequence $\varepsilon_n > 0$ there is a cover $\{U_n\}$ of X such that diam $U_n < \varepsilon_n$.

Consequently:

- $\dim_{\mathsf{H}} X = 0$
- $\dim_{\mathsf{H}} f(X) = 0$ for all uniformly continuous f

Definition

 $X \text{ is } \mathcal{H}\text{-null} \quad \stackrel{\text{def}}{\equiv} \quad \dim_{\mathsf{H}} f(X) = 0 \text{ for all uniformly continuous } f.$

「heorem

- X is SN
- X is \mathcal{H} -null
- $\mathcal{H}^{g}(X) = 0$ for each Haudorff function g

Theorem (Galvin–Mycielski–Solovay)

X is \mathcal{SN} if, and only if:

For any sequence $\varepsilon_n > 0$ there is a cover $\{U_n\}$ of X such that diam $U_n < \varepsilon_n$.

Consequently:

- $\dim_{\mathsf{H}} X = 0$
- $\dim_{\mathsf{H}} f(X) = 0$ for all uniformly continuous f

Definition

 $X \text{ is } \mathcal{H}\text{-null} \quad \stackrel{\text{def}}{\equiv} \quad \dim_{\mathsf{H}} f(X) = 0 \text{ for all uniformly continuous } f.$

Theorem

- X is \mathcal{SN}
- X is \mathcal{H} -null
- $\mathcal{H}^{g}(X) = 0$ for each Haudorff function g

Upper Hausdorff dimension

Definition (Upper Hausdorff dimension)

$$\overline{\dim}_{\mathsf{H}} X = \inf\{s > 0 : \overline{\mathcal{H}}^s(X) = 0\} = \sup\{s > 0 : \overline{\mathcal{H}}^s(X) = \infty\}$$

Upper Hausdorff measure:

•
$$\overline{\mathcal{H}}_0^s(X) = \sup_{\delta > 0} \inf \left\{ \sum_{i=1}^n (dE_n)^s : d(E_i) \leqslant \delta, X \subseteq \underbrace{E_1 \cup \cdots \cup E_n}_{\text{finite covers!}} \right\}$$

•
$$\overline{\mathcal{H}}^{s}(X) = \inf \left\{ \sum_{n=1}^{\infty} \overline{\mathcal{H}}^{s}_{0}(X_{i}) : X \subseteq X_{1} \cup X_{2} \cup \dots \right\}$$
 (Method I)

Elementary facts:

- If X is σ -compact, then $\overline{\dim}_{\mathsf{H}} X = \dim_{\mathsf{H}} X$
- If $Y \supseteq X$ is complete, then

 $\overline{\dim}_{\mathsf{H}} X = \inf \{ \dim_{\mathsf{H}} K : X \subseteq K \subseteq Y, K \ \sigma \text{-compact} \}$

Upper Hausdorff dimension

Definition (Upper Hausdorff dimension)

$$\overline{\dim}_{\mathsf{H}} X = \inf\{s > 0 : \overline{\mathcal{H}}^s(X) = 0\} = \sup\{s > 0 : \overline{\mathcal{H}}^s(X) = \infty\}$$

Upper Hausdorff measure:

•
$$\overline{\mathcal{H}}_0^s(X) = \sup_{\delta > 0} \inf \left\{ \sum_{i=1}^n (dE_n)^s : d(E_i) \leqslant \delta, X \subseteq \underbrace{E_1 \cup \cdots \cup E_n}_{\text{finite covers!}} \right\}$$

•
$$\overline{\mathcal{H}}^{s}(X) = \inf\left\{\sum_{n=1}^{\infty} \overline{\mathcal{H}}^{s}_{0}(X_{i}) : X \subseteq X_{1} \cup X_{2} \cup \dots\right\}$$
 (Method I)

Elementary facts:

- If X is σ -compact, then $\overline{\dim}_{\mathsf{H}} X = \dim_{\mathsf{H}} X$
- If $Y \supseteq X$ is complete, then

$$\overline{\dim}_{\mathsf{H}} X = \inf\{\dim_{\mathsf{H}} K : X \subseteq K \subseteq Y, K \ \sigma\text{-compact}\}\$$

Definition

 $X \text{ is } \overline{\mathcal{H}}\text{-null} \quad \stackrel{\text{def}}{\equiv} \quad \overline{\dim}_{\mathrm{H}} f(X) = 0 \text{ for each uniformly continuous } f.$

Fheorem

The following are equivalent:

• X is $\overline{\mathcal{H}}$ -nul

•
$$\forall g \in \mathbb{H} \quad \overline{\mathcal{H}}^g(X) = 0$$

• $\forall g \in \mathbb{H} \exists K \supseteq X \sigma$ -compact $\mathcal{H}^g(K) = 0$

Definition

 $X \text{ is } \overline{\mathcal{H}}\text{-null} \quad \stackrel{\mathrm{def}}{\equiv} \quad \overline{\dim}_{\mathsf{H}} f(X) = 0 \text{ for each uniformly continuous } f.$

Theorem

The following are equivalent:

• X is $\overline{\mathcal{H}}$ -null

•
$$\forall g \in \mathbb{H} \quad \overline{\mathcal{H}}^g(X) = 0$$

• $\forall g \in \mathbb{H} \exists K \supseteq X \ \sigma\text{-compact} \ \mathcal{H}^g(K) = 0$

Theorem

The following are equivalent:

• X is $\overline{\mathcal{H}}$ -null

•
$$\forall E \in \mathcal{E} \quad \overline{\mathcal{H}}^1(X \times E) = 0$$

• $\forall E \in \mathcal{E} \exists K \supseteq X \sigma$ -compact $\overline{\mathcal{H}}^1(X \times E) = 0$

Want proof?

"You want proof? I'll give you proof!"

A courtesy of Mr. Harris ©ScienceCartoonsPlus.com

Lemma

The following are equivalent:

- $\overline{\mathcal{H}}^h(X) = 0$ for each Hausdorff function h
- $\overline{\mathcal{H}}^1(X \times E) = 0$ for each $E \in \mathcal{E}$

Assume X is \mathcal{H} -null

- $E \in \mathcal{E} \implies \mathcal{P}^g(E) = 0$ for some $g \prec 1$ [g(r) grows faster than r]
- There is h such that $gh \ge 1$
- Howroyd formula: $\overline{\mathcal{H}}^1(X \times E) \leqslant \overline{\mathcal{H}}^{gh}(X \times E) \leqslant \overline{\mathcal{H}}^h(X) \cdot \mathcal{P}^g(E) = 0$

Assume X is not \mathcal{H} -nul

- There is h such that $\overline{\mathcal{H}}^h(X) > 0$
- There is $g \prec 1$ such that $gh \leqslant 1$
- Find $E \in \mathcal{E}$ such that $\mathcal{H}^g E > 0$
- Marstrand formula: $\overline{\mathcal{H}}^1(X \times E) \ge \overline{\mathcal{H}}^{gh}(X \times E) \ge \overline{\mathcal{H}}^h(X) \cdot \mathcal{H}^g(E) > 0$

Lemma

The following are equivalent:

- $\overline{\mathcal{H}}^h(X) = 0$ for each Hausdorff function h
- $\overline{\mathcal{H}}^1(X \times E) = 0$ for each $E \in \mathcal{E}$

$\Downarrow Assume X \text{ is } \mathcal{H}\text{-null}$

- $E \in \mathcal{E} \implies \mathcal{P}^g(E) = 0$ for some $g \prec 1$ [g(r) grows faster than r]
- There is h such that $gh \geqslant 1$
- Howroyd formula: $\overline{\mathcal{H}}^1(X \times E) \leqslant \overline{\mathcal{H}}^{gh}(X \times E) \leqslant \overline{\mathcal{H}}^h(X) \cdot \mathcal{P}^g(E) = 0$

Assume X is not \mathcal{H} -null

- There is h such that $\overline{\mathcal{H}}^h(X) > 0$
- There is $g \prec 1$ such that $gh \leqslant 1$
- Find $E \in \mathcal{E}$ such that $\mathcal{H}^g E > 0$
- Marstrand formula: $\overline{\mathcal{H}}^1(X \times E) \ge \overline{\mathcal{H}}^{gh}(X \times E) \ge \overline{\mathcal{H}}^h(X) \cdot \mathcal{H}^g(E) > 0$

Lemma

The following are equivalent:

- $\overline{\mathcal{H}}^h(X) = 0$ for each Hausdorff function h
- $\overline{\mathcal{H}}^1(X \times E) = 0$ for each $E \in \mathcal{E}$

$\Downarrow Assume X \text{ is } \mathcal{H}\text{-null}$

- $E \in \mathcal{E} \implies \mathcal{P}^g(E) = 0$ for some $g \prec 1$ [g(r) grows faster than r]
- There is h such that $gh \geqslant 1$
- Howroyd formula: $\overline{\mathcal{H}}^1(X \times E) \leqslant \overline{\mathcal{H}}^{gh}(X \times E) \leqslant \overline{\mathcal{H}}^h(X) \cdot \mathcal{P}^g(E) = 0$

 $\Uparrow Assume X is not \mathcal{H}-null$

- There is h such that $\overline{\mathcal{H}}^h(X) > 0$
- There is $g \prec 1$ such that $gh \leqslant 1$
- Find $E \in \mathcal{E}$ such that $\mathcal{H}^g E) > 0$
- Marstrand formula: $\overline{\mathcal{H}}^1(X \times E) \ge \overline{\mathcal{H}}^{gh}(X \times E) \ge \overline{\mathcal{H}}^h(X) \cdot \mathcal{H}^g(E) > 0$

Strongly additive properties

Definition

```
• X is strongly \mathcal{M}-additive (\mathcal{M}^{\sharp}) if
```

```
\forall M \in \mathcal{M} \; \exists K \supseteq X \; \sigma \text{-compact} \quad K + M \in \mathcal{M}
```

• X is strongly \mathcal{E} -additive (\mathcal{E}^{\sharp})

 $\forall N \in \mathcal{N} \ \exists K \supseteq X \ \sigma \text{-compact} \quad K + N \in \mathcal{N}$

```
• X is strongly strongly null (SN^{\sharp}) if
```

 $\forall M \in \mathcal{M} \exists K \supseteq X \text{ } \sigma\text{-compact} \quad K + M \neq 2^{\omega}$

Theorem

 $\overline{\mathcal{H}}$ -null $\iff \mathcal{M}^* \iff \mathcal{M}^{\sharp} \iff \mathcal{SN}^{\sharp}$

Strongly additive properties

Definition

```
• X is strongly \mathcal{M}-additive (\mathcal{M}^{\sharp}) if
```

```
\forall M \in \mathcal{M} \; \exists K \supseteq X \; \sigma \text{-compact} \quad K + M \in \mathcal{M}
```

• X is strongly \mathcal{E} -additive (\mathcal{E}^{\sharp})

 $\forall N \in \mathcal{N} \; \exists K \supseteq X \; \sigma \text{-compact} \quad K + N \in \mathcal{N}$

```
• X is strongly strongly null (SN^{\sharp}) if
```

 $\forall M \in \mathcal{M} \exists K \supseteq X \text{ } \sigma\text{-compact} \quad K + M \neq 2^{\omega}$

Theorem

$\overline{\mathcal{H}}\text{-null} \iff \mathcal{M}^* \iff \mathcal{M}^\sharp \iff \mathcal{E}^\sharp \iff \mathcal{SN}^\sharp$

$$\overline{\mathcal{H}}\text{-null} \implies \mathcal{E}^{\sharp} \Longrightarrow \mathcal{SN}^{\sharp} \Longrightarrow \mathcal{M}^{\sharp} \Longrightarrow \mathcal{M}^{*} \Longrightarrow \overline{\mathcal{H}}\text{-null}$$

Lemma

 $\overline{\mathcal{H}}\text{-null}\Longrightarrow \mathcal{E}^{\sharp}$

Proof.

Fix $E \in \mathcal{E}$.

- There is $K \supseteq X$ σ -compact such that $\mathcal{H}^1(K \times E) = 0$
- $(x,y) \mapsto x+y$ is Lipschitz
- Thus $\overline{\mathcal{H}}^1(K+E) = 0$, i.e. $K+E \in \mathcal{E}$.

$\overline{\mathcal{H}}\text{-null} \implies \mathcal{E}^{\sharp} \Longrightarrow \mathcal{SN}^{\sharp} \Longrightarrow \mathcal{M}^{\sharp} \Longrightarrow \mathcal{M}^{\ast} \Longrightarrow \overline{\mathcal{H}}\text{-null}$

Lemma

 $\mathcal{E}^{\sharp} \Longrightarrow \mathcal{SN}^{\sharp}$

Proof.

Fix $M \in \mathcal{M}$.

- Pawlikowski 1995: There is $E \in \mathcal{E}$ such that $K + E \in \mathcal{N} \implies K + M \neq 2^{\omega}$
- There is $K \supseteq X \sigma$ -compact such that $K + E \in \mathcal{E} \subseteq \mathcal{N}$
- Thus $K + M \neq 2^{\omega}$

Lemma

 $\mathcal{SN}^{\sharp} \Longrightarrow \mathcal{M}^{\sharp}$

Lemma

 $\mathcal{M}^{\sharp} \Longrightarrow \mathcal{M}^{\ast}$

$\overline{\mathcal{H}}\text{-null} \implies \mathcal{E}^{\sharp} \Longrightarrow \mathcal{SN}^{\sharp} \Longrightarrow \mathcal{M}^{\sharp} \Longrightarrow \mathcal{M}^{*} \Longrightarrow \overline{\mathcal{H}}\text{-null}$

Lemma

$$\mathcal{M}^* \Longrightarrow \overline{\mathcal{H}}\text{-null}$$

Theorem (Shelah 1995)

If $X \subseteq 2^{\omega}$ is meager-additive, then: $\forall f \in \omega^{\uparrow \omega} \exists g \in \omega^{\omega} \exists y \in 2^{\omega} \ \forall x \in X \ \exists m \in \omega \ \forall n \ge m \ \exists k \in \omega$ $g(n) \leqslant f(k) < g(n+1) \ \& x \upharpoonright [f(k), f(k+1)) = y \upharpoonright [f(k), f(k+1))$

Proof – vague outline.

Fix $h \in \mathbb{H}$.

• Understand the condition: The balls

 $B(y, 2^{-f(k+1)}) + p, \qquad n \in \omega, \ g(n) \leq k < g(n+1), \ p \in 2^{f(k)}$

form the right cover of X.

- Define properly *f*.
- Calculate Hausdorff sums.

$\overline{\mathcal{H}}\text{-null} \implies \mathcal{E}^{\sharp} \Longrightarrow \mathcal{SN}^{\sharp} \Longrightarrow \mathcal{M}^{\sharp} \Longrightarrow \mathcal{M}^{*} \Longrightarrow \overline{\mathcal{H}}\text{-null}$

Lemma

 $\mathcal{M}^* \Longrightarrow \overline{\mathcal{H}}\text{-null}$

Theorem (Shelah 1995 DON'T READ IT!)

If $X \subseteq 2^{\omega}$ is meager-additive, then: $\forall f \in \omega^{\uparrow \omega} \exists g \in \omega^{\omega} \exists y \in 2^{\omega} \forall x \in X \exists m \in \omega \forall n \ge m \exists k \in \omega$ $g(n) \leq f(k) < g(n+1) \& x \upharpoonright [f(k), f(k+1)] = y \upharpoonright [f(k), f(k+1)]$

Proof – vague outline.

Fix $h \in \mathbb{H}$.

• Understand the condition: The balls

 $B(y, 2^{-f(k+1)}) + p, \qquad n \in \omega, \ g(n) \leq k < g(n+1), \ p \in 2^{f(k)}$

form the right cover of X.

- Define properly *f*.
- Calculate Hausdorff sums.

$\overline{\mathcal{H}}\text{-null} \implies \mathcal{E}^{\sharp} \Longrightarrow \mathcal{SN}^{\sharp} \Longrightarrow \mathcal{M}^{\sharp} \Longrightarrow \mathcal{M}^{*} \Longrightarrow \overline{\mathcal{H}}\text{-null}$

Lemma

 $\mathcal{M}^* \Longrightarrow \overline{\mathcal{H}}\text{-null}$

Theorem (Shelah 1995 DON'T READ IT!)

If $X \subseteq 2^{\omega}$ is meager-additive, then: $\forall f \in \omega^{\uparrow \omega} \exists g \in \omega^{\omega} \exists y \in 2^{\omega} \forall x \in X \exists m \in \omega \forall n \ge m \exists k \in \omega$ $g(n) \leqslant f(k) < g(n+1) \& x \upharpoonright [f(k), f(k+1)] = y \upharpoonright [f(k), f(k+1)]$

Proof - vague outline.

Fix $h \in \mathbb{H}$.

• Understand the condition: The balls

 $B(y,2^{-f(k+1)})+p, \qquad n\in\omega, \ g(n)\leqslant k< g(n+1), \ p\in 2^{f(k)}$

form the right cover of X.

- Define properly f.
- Calculate Hausdorff sums.

Corollary

- $\mathcal{M}^* \iff \overline{\mathcal{H}}$ -null
- If X is \mathcal{M}^* and $f: 2^{\omega} \to 2^{\omega}$, then f(X) is \mathcal{M}^* .

Corollary

 $\mathcal{M}^* \implies \mathcal{E}^*$

$\mathcal{N}^* \Longrightarrow (T') \Longrightarrow \mathcal{M}^* \Longrightarrow \mathcal{E}^* \Longrightarrow \mathcal{SN}$

Corollary

(CH) $\mathcal{E}^* \Rightarrow (\mathbf{T}')$

Corollary

- $\mathcal{M}^* \iff \overline{\mathcal{H}}$ -null
- If X is \mathcal{M}^* and $f: 2^{\omega} \to 2^{\omega}$, then f(X) is \mathcal{M}^* .

Corollary

 $\mathcal{M}^* \implies \mathcal{E}^*$

Corollary

(CH) $\mathcal{E}^* \Rightarrow (T')$

Corollary

- $\mathcal{M}^* \iff \overline{\mathcal{H}}$ -null
- If X is \mathcal{M}^* and $f: 2^{\omega} \to 2^{\omega}$, then f(X) is \mathcal{M}^* .

Corollary

 $\mathcal{M}^* \implies \mathcal{E}^*$

$$\mathcal{N}^* \Longrightarrow (T') \Longrightarrow \mathcal{M}^* \Longrightarrow \mathcal{E}^* \Longrightarrow \mathcal{SN}$$

Corollary

(CH) $\mathcal{E}^* \Rightarrow (\mathbf{T}')$

Corollary

- $\mathcal{M}^* \iff \overline{\mathcal{H}}$ -null
- If X is \mathcal{M}^* and $f: 2^{\omega} \to 2^{\omega}$, then f(X) is \mathcal{M}^* .

Corollary

 $\mathcal{M}^* \implies \mathcal{E}^*$

$$\mathcal{N}^* \Longrightarrow (T') \Longrightarrow \mathcal{M}^* \Longrightarrow \mathcal{E}^* \Longrightarrow \mathcal{SN}$$

Corollary

(CH) $\mathcal{E}^* \Rightarrow (T')$

$\overline{\mathcal{M}}^*$ versus \mathcal{E}^*

•
$$\mathcal{M}^*$$
: $\overline{\mathcal{H}}^1(X \times E) = 0$ for all $E \in \mathcal{E}$

•
$$\mathcal{E}^*$$
 : $\overline{\mathcal{H}}^1(X+E) = 0$ for all $E \in \mathcal{E}$

Question

 $\mathcal{E}^* \iff \mathcal{M}^*$???

\mathcal{M}^* versus \mathcal{E}^*

•
$$\mathcal{M}^*$$
: $\overline{\mathcal{H}}^1(X \times E) = 0$ for all $E \in \mathcal{E}$

•
$$\mathcal{E}^*$$
 : $\overline{\mathcal{H}}^1(X+E) = 0$ for all $E \in \mathcal{E}$

Question

$$\mathcal{E}^* \iff \mathcal{M}^*$$
???

The line

$$T: \begin{cases} 2^{\omega} \to [0,1] \\ x \mapsto \frac{1}{2} \sum 2^{-n} x(n) \end{cases}$$

Proposition

- X is $\overline{\mathcal{H}}$ -null $\iff T(X)$ is $\overline{\mathcal{H}}$ -null
- (Weiss 2009) X is $\mathcal{M}^* \iff T(X)$ is \mathcal{M}^*

Theorem $(X \subseteq \mathbb{R})$

 $\overline{\mathcal{H}}\text{-null} \Longleftrightarrow \mathcal{M}^* \Longleftrightarrow \mathcal{M}^{\sharp} \Longrightarrow \mathcal{E}^{\sharp} \Longrightarrow \mathcal{E}^*$

The line

$$T: \begin{cases} 2^{\omega} \to [0,1] \\ x \mapsto \frac{1}{2} \sum 2^{-n} x(n) \end{cases}$$

Proposition

- $X \text{ is } \overline{\mathcal{H}}\text{-null} \iff T(X) \text{ is } \overline{\mathcal{H}}\text{-null}$
- (Weiss 2009) X is $\mathcal{M}^* \iff T(X)$ is \mathcal{M}^*

Theorem $(X \subseteq \mathbb{R})$

 $\overline{\mathcal{H}}\text{-null} \Longleftrightarrow \mathcal{M}^* \Longleftrightarrow \mathcal{M}^{\sharp} \implies \mathcal{E}^{\sharp} \implies \mathcal{E}^*$

$$T: \begin{cases} 2^{\omega} \to [0,1]\\ x \mapsto \frac{1}{2} \sum 2^{-n} x(n) \end{cases}$$

Proposition

- $X \text{ is } \overline{\mathcal{H}}\text{-null} \iff T(X) \text{ is } \overline{\mathcal{H}}\text{-null}$
- (Weiss 2009) X is $\mathcal{M}^* \iff T(X)$ is \mathcal{M}^*

Theorem $(X \subseteq \mathbb{R})$

 $\overline{\mathcal{H}}\text{-null} \Longleftrightarrow \mathcal{M}^* \Longleftrightarrow \mathcal{M}^{\sharp} \Longrightarrow \mathcal{E}^{\sharp} \Longrightarrow \mathcal{E}^*$

Theorem

- $\overline{\mathcal{H}}$ -null $\times \overline{\mathcal{H}}$ -null *is* $\overline{\mathcal{H}}$ -null
- $\overline{\mathcal{H}}$ -null \times \mathcal{H} -null *is* \mathcal{H} -null [Strengthens Scheepers' Theorem]

Corollary

- $X, Y \subseteq \mathbb{R}$ are $\mathcal{M}^* \implies X \times Y$ is \mathcal{M}^*
- $X \subseteq \mathbb{R}^n$ is $\mathcal{M}^* \iff$ all projections of X are \mathcal{M}^*

Theorem

- $\overline{\mathcal{H}}$ -null $\times \overline{\mathcal{H}}$ -null *is* $\overline{\mathcal{H}}$ -null
- $\overline{\mathcal{H}}$ -null \times \mathcal{H} -null *is* \mathcal{H} -null [Strengthens Scheepers' Theorem]

Corollary

- $X, Y \subseteq \mathbb{R}$ are $\mathcal{M}^* \implies X \times Y$ is \mathcal{M}^*
- $X \subseteq \mathbb{R}^n$ is $\mathcal{M}^* \iff$ all projections of X are \mathcal{M}^*

- Hausdorff dimension $\dim_{\mathsf{H}} X \dots \mathcal{H}$ -null
- Upper Hausdorff dimension $\overline{\dim}_H X \dots \overline{\mathcal{H}}$ -null
- Directed lower packing dimension $\underline{\dim}_{P} X \dots \underline{\mathcal{P}}$ -null

• Upper packing dimension $\overline{\dim}_{\mathsf{P}} X \dots \overline{\mathcal{P}}$ -null

 $\overline{\dim}_{\mathsf{P}} X \ge \dim_{\mathsf{P}} X \ge \overline{\dim}_{\mathsf{H}} X \ge \dim_{\mathsf{H}} X$

- Hausdorff dimension $\dim_{\mathsf{H}} X \dots \mathcal{H}$ -null
- Upper Hausdorff dimension $\overline{\dim}_H X \dots \overline{\mathcal{H}}$ -null
- Directed lower packing dimension $\underline{\dim}_{\mathsf{P}} X \dots \underline{\mathcal{P}}_{\mathsf{-null}}$
- Upper packing dimension $\overline{\dim}_{\mathsf{P}} X \dots \overline{\mathcal{P}}$ -null

 $\overline{\dim}_{\mathsf{P}} X \ge \dim_{\mathsf{P}} X \ge \overline{\dim}_{\mathsf{H}} X \ge \dim_{\mathsf{H}} X$

- Hausdorff dimension $\dim_{\mathsf{H}} X \dots \mathcal{H}$ -null
- Upper Hausdorff dimension $\overline{\dim}_{H} X \dots \overline{\mathcal{H}}$ -null
- Directed lower packing dimension $\underline{\dim}_{\mathsf{P}} X \dots \underline{\mathcal{P}}_{\mathsf{-null}}$
- Upper packing dimension $\overline{\dim}_{\mathsf{P}} X \dots \overline{\mathcal{P}}$ -null

- Hausdorff dimension $\dim_{\mathsf{H}} X \dots \mathcal{H}$ -null
- Upper Hausdorff dimension $\overline{\dim}_H X \dots \overline{\mathcal{H}}$ -null
- Directed lower packing dimension $\dim_{\mathsf{P}} X \dots \underline{\mathcal{P}}$ -null
- Upper packing dimension $\overline{\dim}_{\mathsf{P}} X \dots \overline{\mathcal{P}}$ -null

Theorem				
$\overline{\mathcal{P}}$ -null	$\mathcal{P}_{-}null$	$\overline{\mathcal{H}} ext{-null}$	$\mathcal{H} ext{-null}$	
↕		⊅	\uparrow	
\mathcal{N}^*	(T')	\mathcal{M}^*	\mathcal{SN}	

- Hausdorff dimension $\dim_{\mathsf{H}} X \dots \mathcal{H}$ -null
- Upper Hausdorff dimension $\overline{\dim}_H X \dots \overline{\mathcal{H}}$ -null
- Directed lower packing dimension $\dim_{\mathsf{P}} X \dots \underline{\mathcal{P}}$ -null
- Upper packing dimension $\overline{\dim}_{\mathsf{P}} X \dots \overline{\mathcal{P}}$ -null

Theorem							
$\overline{\mathcal{P}}$ -null	\implies	$\mathcal{P}_{-}null$	\implies	$\overline{\mathcal{H}} ext{-null}$	\Rightarrow	$\mathcal{H} ext{-null}$	
\$		⇒		\uparrow		\$	
\mathcal{N}^*		(T')		\mathcal{M}^*		\mathcal{SN}	

- Hausdorff dimension $\dim_{\mathsf{H}} X \dots \mathcal{H}$ -null
- Upper Hausdorff dimension $\overline{\dim}_H X \dots \overline{\mathcal{H}}$ -null
- Directed lower packing dimension $\dim_{\mathsf{P}} X \dots \underline{\mathcal{P}}$ -null
- Upper packing dimension $\overline{\dim}_{\mathsf{P}} X \dots \overline{\mathcal{P}}$ -null

Theorem							
$\overline{\mathcal{P}}$ -null	\implies	$\underline{\mathcal{P}}$ -null	\Rightarrow	$\overline{\mathcal{H}} ext{-null}$	\Rightarrow	$\mathcal{H} ext{-null}$	
\$				⊅		\updownarrow	
\mathcal{N}^*	\Rightarrow	(T')	\Rightarrow	\mathcal{M}^*	\Rightarrow	\mathcal{SN}	

Definition

 $X \text{ is topologically } \mathcal{H}\text{-null} \quad \stackrel{\mathrm{def}}{\equiv} \quad \dim_{\mathrm{H}} f(X) \text{ for each continuous } f.$

- topologically \mathcal{H} -null \iff Rothberger property
- topologically $\overline{\mathcal{H}}$ -null \iff Gerlits–Nagy property
- topologically \mathcal{P} -null \leftarrow strong γ -set.
- but consistently topologically P-null \Rightarrow strong γ -set

Definition

 $X \text{ is topologically } \mathcal{H}\text{-null} \quad \stackrel{\text{def}}{\equiv} \quad \dim_{\mathsf{H}} f(X) \text{ for each continuous } f.$

- topologically \mathcal{H} -null \iff Rothberger property
- topologically $\overline{\mathcal{H}}$ -null \iff Gerlits–Nagy property
- topologically \mathcal{P} -null \Longleftarrow strong γ -set
- but consistently topologically \mathcal{P} -null \Rightarrow strong γ -set

Definition

X is topologically \mathcal{H} -null $\stackrel{\text{def}}{\equiv} \dim_{\mathsf{H}} f(X)$ for each continuous f.

- topologically \mathcal{H} -null \iff Rothberger property
- topologically $\overline{\mathcal{H}}$ -null \iff Gerlits–Nagy property
- topologically \mathcal{P} -null \Leftarrow strong γ -set
- but consistently topologically \mathcal{P} -null \Rightarrow strong γ -set

Definition

X is topologically \mathcal{H} -null $\stackrel{\text{def}}{\equiv} \dim_{\mathsf{H}} f(X)$ for each continuous f.

- topologically \mathcal{H} -null \iff Rothberger property
- topologically $\overline{\mathcal{H}}$ -null \iff Gerlits–Nagy property
- topologically \mathcal{P} -null \Leftarrow strong γ -set
- but consistently topologically \mathcal{P} -null \Rightarrow strong γ -set

Ondřej Zindulka Every \mathcal{M} -additive set is \mathcal{E} -additive