Every \mathcal{M}-additive set is \mathcal{E}-additive: application of fractal dimensions

Ondřej Zindulka

Czech Technical University Prague

Winter School in Abstract Analysis
Hejnice 2009

Objects:
Adding sets:
$X+Y=\{x+y: x \in X, y \in Y\}$
(addition coordinatewise modulo 2)
Measure on 2^{ω} : The usual product measure
Metric on $2^{\omega}: \quad d(x, y)=2^{-n(x, y)}$

Objects: $\quad X \subseteq 2^{\omega}$
Adding sets:
$X+Y=\{x+y: x \in X, y \in Y\}$
(addition coordinatewise modulo 2)
Measure on 2^{ω} : The usual product measure
Metric on $2^{\omega}: \quad d(x, y)=2^{-n(x, y)}$

Definitions

$\mathcal{N}^{*} \quad \mathcal{N}$-additive: $\quad X+N \in \mathcal{N}$ for each $N \in \mathcal{N}$
$\mathcal{M}^{*} \quad \mathcal{M}$-additive: $\quad X+M \in \mathcal{M}$ for each $M \in \mathcal{M}$
$\mathcal{E}^{*} \quad \mathcal{E}$-additive: $\quad X+E \in \mathcal{E}$ for each $E \in \mathcal{E}$
$\mathcal{S N} \quad$ strongly null: $\quad X+M \neq 2^{\omega}$ for each $M \in \mathcal{M}$

Inclusions
\mathcal{N}^{*}

\mathcal{M}^{*}
\mathcal{E}^{*}
$\mathcal{S N}$

Inclusions

\mathcal{N}^{*}
\mathcal{M}^{*}
\mathcal{E}^{*}
$\mathcal{S N}$

Inclusions
\mathcal{N}^{*}
\Downarrow

> Theorem (Shelah 1995) $\mathcal{N}^{*} \Longrightarrow \mathcal{M}^{*}$

Theorem (Corollary to Pawlikowski 1995)

$$
\mathcal{E}^{*} \Longrightarrow \mathcal{S N}
$$

Nowik, Weiss 2002:

Definition (DONTT RDAD IT:)

X is (T^{\prime}) if: $\exists g \in \omega^{\omega} \forall f \in \omega^{\uparrow \omega} \exists I \in[\omega]^{\omega} \exists\left\langle H_{n}: n \in I\right\rangle$
(1) $\forall n \in I H_{n} \subseteq 2^{[f(n), f(n+1))}$,
(2) $\forall n \in I\left|H_{n}\right| \leqslant g(n)$,
(3) $X \subseteq\left\{x \in 2^{\omega}: \forall^{\infty} n \in I x \upharpoonright[f(n), f(n+1)) \in H_{n}\right\}$.

Inclusions

\mathcal{N}^{*}
\Downarrow
$\left(\mathrm{~T}^{\prime}\right)$
\Downarrow
\mathcal{M}^{*}

\mathcal{E}^{*}
\Downarrow
$\mathcal{S N}$

Nowik, Weiss 2002:

Definition (DON'T READ IT!)

X is (T^{\prime}) if: $\exists g \in \omega^{\omega} \forall f \in \omega^{\uparrow \omega} \exists I \in[\omega]^{\omega} \exists\left\langle H_{n}: n \in I\right\rangle$
(1) $\forall n \in I H_{n} \subseteq 2^{[f(n), f(n+1))}$,
(2) $\forall n \in I\left|H_{n}\right| \leqslant g(n)$,
(3) $X \subseteq\left\{x \in 2^{\omega}: \forall^{\infty} n \in I x \upharpoonright[f(n), f(n+1)) \in H_{n}\right\}$.

Theorem

$$
\mathcal{N}^{*} \Longrightarrow\left(\mathrm{~T}^{\prime}\right) \Longrightarrow \mathcal{M}^{*}
$$

$\mathcal{S N}$

Inclusions

\mathcal{N}^{*}
\Downarrow
$\left(\mathrm{~T}^{\prime}\right)$
\Downarrow
\mathcal{M}^{*}

\mathcal{E}^{*}
\Downarrow
$\mathcal{S N}$

Nowik, Weiss 2002:

Definition (DONTTREAD IT!)

X is (T^{\prime}) if: $\exists g \in \omega^{\omega} \forall f \in \omega^{\uparrow \omega} \exists I \in[\omega]^{\omega} \exists\left\langle H_{n}: n \in I\right\rangle$
(1) $\forall n \in I H_{n} \subseteq 2^{[f(n), f(n+1))}$,
(2) $\forall n \in I\left|H_{n}\right| \leqslant g(n)$,
(3) $X \subseteq\left\{x \in 2^{\omega}: \forall^{\infty} n \in I x \upharpoonright[f(n), f(n+1)) \in H_{n}\right\}$.

Theorem

$$
\mathcal{N}^{*} \Longrightarrow\left(\mathrm{~T}^{\prime}\right) \Longrightarrow \mathcal{M}^{*}
$$

Question

$$
\mathcal{E}^{*} \Longleftrightarrow\left(\mathrm{~T}^{\prime}\right) ? ? ?
$$

$\mathcal{S N}$

Theorem (Galvin-Mycielski-Solovay)

X is $\mathcal{S N}$ if, and only if:
For any sequence $\varepsilon_{n}>0$ there is a cover $\left\{U_{n}\right\}$ of X such that $\operatorname{diam} U_{n}<\varepsilon_{n}$.

\mathcal{H}-null sets

Theorem (Galvin-Mycielski-Solovay)

X is $\mathcal{S N}$ if, and only if:
For any sequence $\varepsilon_{n}>0$ there is a cover $\left\{U_{n}\right\}$ of X such that $\operatorname{diam} U_{n}<\varepsilon_{n}$.

Consequently:

- $\operatorname{dim}_{\mathrm{H}} X=0$

\mathcal{H}-null sets

Theorem (Galvin-Mycielski-Solovay)

X is $\mathcal{S N}$ if, and only if:
For any sequence $\varepsilon_{n}>0$ there is a cover $\left\{U_{n}\right\}$ of X such that $\operatorname{diam} U_{n}<\varepsilon_{n}$.

Consequently:

- $\operatorname{dim}_{\mathrm{H}} X=0$
- $\operatorname{dim}_{\mathrm{H}} f(X)=0$ for all uniformly continuous f

\mathcal{H}-null sets

Theorem (Galvin-Mycielski-Solovay)

X is $\mathcal{S N}$ if, and only if:
For any sequence $\varepsilon_{n}>0$ there is a cover $\left\{U_{n}\right\}$ of X such that $\operatorname{diam} U_{n}<\varepsilon_{n}$.

Consequently:

- $\operatorname{dim}_{\mathrm{H}} X=0$
- $\operatorname{dim}_{\mathrm{H}} f(X)=0$ for all uniformly continuous f

Definition

X is \mathcal{H}-null $\stackrel{\text { def }}{\equiv} \operatorname{dim}_{\mathrm{H}} f(X)=0$ for all uniformly continuous f.

\mathcal{H}-null sets

Theorem (Galvin-Mycielski-Solovay)

X is $\mathcal{S N}$ if, and only if:
For any sequence $\varepsilon_{n}>0$ there is a cover $\left\{U_{n}\right\}$ of X such that $\operatorname{diam} U_{n}<\varepsilon_{n}$.

Consequently:

- $\operatorname{dim}_{\mathrm{H}} X=0$
- $\operatorname{dim}_{\mathrm{H}} f(X)=0$ for all uniformly continuous f

Definition

X is \mathcal{H}-null $\stackrel{\text { def }}{\equiv} \operatorname{dim}_{\mathrm{H}} f(X)=0$ for all uniformly continuous f.

Theorem

The following are equivalent:

- X is $\mathcal{S N}$
- X is \mathcal{H}-null
- $\mathcal{H}^{g}(X)=0$ for each Haudorff function g

Upper Hausdorff dimension

Definition (Upper Hausdorff dimension)

$$
\overline{\operatorname{dim}}_{H} X=\inf \left\{s>0: \overline{\mathcal{H}}^{s}(X)=0\right\}=\sup \left\{s>0: \overline{\mathcal{H}}^{s}(X)=\infty\right\}
$$

Upper Hausdorff measure:

- $\overline{\mathcal{H}}_{0}^{s}(X)=\sup _{\delta>0} \inf \{\sum_{i=1}^{n}\left(d E_{n}\right)^{s}: d\left(E_{i}\right) \leqslant \delta, X \subseteq \underbrace{E_{1} \cup \cdots \cup E_{n}}_{\text {finite covers! }}\}$
- $\overline{\mathcal{H}}^{s}(X)=\inf \left\{\sum_{n=1}^{\infty} \overline{\mathcal{H}}_{0}^{s}\left(X_{i}\right): X \subseteq X_{1} \cup X_{2} \cup \ldots\right\}$ (Method I)

Definition (Upper Hausdorff dimension)

$$
\overline{\operatorname{dim}}_{H} X=\inf \left\{s>0: \overline{\mathcal{H}}^{s}(X)=0\right\}=\sup \left\{s>0: \overline{\mathcal{H}}^{s}(X)=\infty\right\}
$$

Upper Hausdorff measure:

- $\overline{\mathcal{H}}_{0}^{s}(X)=\sup _{\delta>0} \inf \{\sum_{i=1}^{n}\left(d E_{n}\right)^{s}: d\left(E_{i}\right) \leqslant \delta, X \subseteq \underbrace{E_{1} \cup \cdots \cup E_{n}}_{\text {finite covers! }}\}$
- $\overline{\mathcal{H}}^{s}(X)=\inf \left\{\sum_{n=1}^{\infty} \overline{\mathcal{H}}_{0}^{s}\left(X_{i}\right): X \subseteq X_{1} \cup X_{2} \cup \ldots\right\}$ (Method I)

Elementary facts:

- If X is σ-compact, then $\operatorname{dim}_{H} X=\operatorname{dim}_{H} X$
- If $Y \supseteq X$ is complete, then

$$
\overline{\operatorname{dim}}_{H} X=\inf \left\{\operatorname{dim}_{H} K: X \subseteq K \subseteq Y, K \sigma \text {-compact }\right\}
$$

Definition

X is $\overline{\mathcal{H}}$-null $\stackrel{\text { def }}{\equiv} \overline{\operatorname{dim}}_{H} f(X)=0$ for each uniformly continuous f.

Definition

X is $\overline{\mathcal{H}}$-null $\stackrel{\text { def }}{\equiv} \overline{\operatorname{dim}}_{H} f(X)=0$ for each uniformly continuous f.

Theorem

The following are equivalent:

- X is $\overline{\mathcal{H}}$-null
- $\forall g \in \mathbb{H} \quad \overline{\mathcal{H}}^{g}(X)=0$
- $\forall g \in \mathbb{H} \exists K \supseteq X \sigma$-compact $\quad \mathcal{H}^{g}(K)=0$

Theorem

The following are equivalent:

- X is $\overline{\mathcal{H}}$-null
- $\forall E \in \mathcal{E} \quad \overline{\mathcal{H}}^{1}(X \times E)=0$
- $\forall E \in \mathcal{E} \exists K \supseteq X \sigma$-compact $\quad \overline{\mathcal{H}}^{1}(X \times E)=0$

"You want proof? I'll give you proof!"

Lemma

The following are equivalent:

- $\overline{\mathcal{H}}^{h}(X)=0$ for each Hausdorff function h
- $\overline{\mathcal{H}}^{1}(X \times E)=0$ for each $E \in \mathcal{E}$

$\overline{\mathcal{H}}$-null sets and products

Lemma

The following are equivalent:

- $\overline{\mathcal{H}}^{h}(X)=0$ for each Hausdorff function h
- $\overline{\mathcal{H}}^{1}(X \times E)=0$ for each $E \in \mathcal{E}$
\Downarrow Assume X is \mathcal{H}-null
- $E \in \mathcal{E} \Longrightarrow \mathcal{P}^{g}(E)=0$ for some $g \prec 1[g(r)$ grows faster than $r]$
- There is h such that $g h \geqslant 1$
- Howroyd formula: $\overline{\mathcal{H}}^{1}(X \times E) \leqslant \overline{\mathcal{H}}^{g h}(X \times E) \leqslant \overline{\mathcal{H}}^{h}(X) \cdot \mathcal{P}^{g}(E)=0$

$\overline{\mathcal{H}}$-null sets and products

Lemma

The following are equivalent:

- $\overline{\mathcal{H}}^{h}(X)=0$ for each Hausdorff function h
- $\overline{\mathcal{H}}^{1}(X \times E)=0$ for each $E \in \mathcal{E}$
\Downarrow Assume X is \mathcal{H}-null
- $E \in \mathcal{E} \Longrightarrow \mathcal{P}^{g}(E)=0$ for some $g \prec 1[g(r)$ grows faster than $r]$
- There is h such that $g h \geqslant 1$
- Howroyd formula: $\overline{\mathcal{H}}^{1}(X \times E) \leqslant \overline{\mathcal{H}}^{g h}(X \times E) \leqslant \overline{\mathcal{H}}^{h}(X) \cdot \mathcal{P}^{g}(E)=0$
\Uparrow Assume X is not \mathcal{H}-null
- There is h such that $\overline{\mathcal{H}}^{h}(X)>0$
- There is $g \prec 1$ such that $g h \leqslant 1$
- Find $E \in \mathcal{E}$ such that $\left.\mathcal{H}^{g} E\right)>0$
- Marstrand formula: $\overline{\mathcal{H}}^{1}(X \times E) \geqslant \overline{\mathcal{H}}^{g h}(X \times E) \geqslant \overline{\mathcal{H}}^{h}(X) \cdot \mathcal{H}^{g}(E)>0$

Strongly additive properties

Definition

- X is strongly \mathcal{M}-additive $\left(\mathcal{M}^{\sharp}\right)$ if

$$
\forall M \in \mathcal{M} \exists K \supseteq X \sigma \text {-compact } \quad K+M \in \mathcal{M}
$$

- X is strongly \mathcal{E}-additive $\left(\mathcal{E}^{\sharp}\right)$

$$
\forall N \in \mathcal{N} \exists K \supseteq X \sigma \text {-compact } \quad K+N \in \mathcal{N}
$$

- X is strongly strongly null $\left(\mathcal{S N}^{\sharp}\right)$ if

$$
\forall M \in \mathcal{M} \exists K \supseteq X \sigma \text {-compact } \quad K+M \neq 2^{\omega}
$$

Strongly additive properties

Definition

- X is strongly \mathcal{M}-additive $\left(\mathcal{M}^{\sharp}\right)$ if

$$
\forall M \in \mathcal{M} \exists K \supseteq X \sigma \text {-compact } \quad K+M \in \mathcal{M}
$$

- X is strongly \mathcal{E}-additive $\left(\mathcal{E}^{\sharp}\right)$

$$
\forall N \in \mathcal{N} \exists K \supseteq X \sigma \text {-compact } \quad K+N \in \mathcal{N}
$$

- X is strongly strongly null $\left(\mathcal{S N}^{\sharp}\right)$ if

$$
\forall M \in \mathcal{M} \exists K \supseteq X \sigma \text {-compact } \quad K+M \neq 2^{\omega}
$$

Theorem

$$
\overline{\mathcal{H}} \text {-null } \Longleftrightarrow \mathcal{M}^{*} \Longleftrightarrow \mathcal{M}^{\sharp} \Longleftrightarrow \mathcal{E}^{\sharp} \Longleftrightarrow \mathcal{S N}^{\sharp}
$$

$$
\Longrightarrow \mathcal{S N}{ }^{\sharp} \Longrightarrow \mathcal{M}^{\sharp} \Longrightarrow \mathcal{M}^{*} \Longrightarrow \overline{\mathcal{F}} \text {-null }
$$

Lemma

$\overline{\mathcal{H}}$-null $\Longrightarrow \mathcal{E}^{\sharp}$

Proof.

Fix $E \in \mathcal{E}$.

- There is $K \supseteq X \sigma$-compact such that $\mathcal{H}^{1}(K \times E)=0$
- $(x, y) \mapsto x+y$ is Lipschitz
- Thus $\overline{\mathcal{H}}^{1}(K+E)=0$, i.e. $K+E \in \mathcal{E}$.

Lemma

$$
\mathcal{E}^{\sharp} \Longrightarrow \mathcal{S} \mathcal{N}^{\sharp}
$$

Proof.

Fix $M \in \mathcal{M}$.

- Pawlikowski 1995: There is $E \in \mathcal{E}$ such that

$$
K+E \in \mathcal{N} \Longrightarrow K+M \neq 2^{\omega}
$$

- There is $K \supseteq X \sigma$-compact such that $K+E \in \mathcal{E} \subseteq \mathcal{N}$
- Thus $K+M \neq 2^{\omega}$

Lemma

$\mathcal{S N}^{\sharp} \Longrightarrow \mathcal{M}^{\sharp}$

Lemma

$\mathcal{M}^{\sharp} \Longrightarrow \mathcal{M}^{*}$

Lemma

$$
\mathcal{M}^{*} \Longrightarrow \overline{\mathcal{H}} \text {-null }
$$

$$
\overline{\mathcal{F}} \text {-null } \Longrightarrow \mathcal{E}^{\sharp} \Longrightarrow \mathcal{S} \mathcal{N}^{\sharp} \Longrightarrow \mathcal{M}^{\sharp} \Longrightarrow
$$

Lemma

$$
\mathcal{M}^{*} \Longrightarrow \overline{\mathcal{H}} \text {-null }
$$

Theorem (Shelah 1995 Don tr Read it)

If $X \subseteq 2^{\omega}$ is meager-additive, then:

$$
\begin{aligned}
& \forall f \in \omega^{\uparrow \omega} \exists g \in \omega^{\omega} \exists y \in 2^{\omega} \forall x \in X \exists m \in \omega \forall n \geqslant m \exists k \in \omega \\
& \quad g(n) \leqslant f(k)<g(n+1) \& x\lceil[f(k), f(k+1))=y \upharpoonright[f(k), f(k+1))
\end{aligned}
$$

$\overline{\mathcal{H}}$-null $\Longrightarrow \mathcal{E}^{\sharp} \Longrightarrow \mathcal{S} \mathcal{N}^{\sharp} \Longrightarrow \mathcal{M}^{\sharp} \Longrightarrow$

Lemma

$$
\mathcal{M}^{*} \Longrightarrow \overline{\mathcal{H}} \text {-null }
$$

Theorem (Shelah 1995 Don tr read it)

If $X \subseteq 2^{\omega}$ is meager-additive, then:

$$
\begin{aligned}
& \forall f \in \omega^{\uparrow \omega} \exists g \in \omega^{\omega} \exists y \in 2^{\omega} \forall x \in X \exists m \in \omega \forall n \geqslant m \exists k \in \omega \\
& \quad g(n) \leqslant f(k)<g(n+1) \& x\lceil[f(k), f(k+1))=y \upharpoonright[f(k), f(k+1))
\end{aligned}
$$

Proof - vague outline.

Fix $h \in \mathbb{H}$.

- Understand the condition: The balls

$$
B\left(y, 2^{-f(k+1)}\right)+p, \quad n \in \omega, g(n) \leqslant k<g(n+1), p \in 2^{f(k)}
$$

form the right cover of X.

- Define properly f.
- Calculate Hausdorff sums.

Consequences

Corollary

- $\mathcal{M}^{*} \Longleftrightarrow \overline{\mathcal{H}}$-null
- If X is \mathcal{M}^{*} and $f: 2^{\omega} \rightarrow 2^{\omega}$, then $f(X)$ is \mathcal{M}^{*}.

Consequences

Corollary

- $\mathcal{M}^{*} \Longleftrightarrow \overline{\mathcal{H}}$-null
- If X is \mathcal{M}^{*} and $f: 2^{\omega} \rightarrow 2^{\omega}$, then $f(X)$ is \mathcal{M}^{*}.

Corollary

$$
\mathcal{M}^{*} \Longrightarrow \mathcal{E}^{*}
$$

Consequences

Corollary

- $\mathcal{M}^{*} \Longleftrightarrow \overline{\mathcal{H}}$-null
- If X is \mathcal{M}^{*} and $f: 2^{\omega} \rightarrow 2^{\omega}$, then $f(X)$ is \mathcal{M}^{*}.

Corollary

$$
\mathcal{M}^{*} \Longrightarrow \mathcal{E}^{*}
$$

$$
\mathcal{N}^{*} \Longrightarrow\left(\mathrm{~T}^{\prime}\right) \Longrightarrow \mathcal{M}^{*} \Longrightarrow \mathcal{E}^{*} \Longrightarrow \mathcal{S N}
$$

Consequences

Corollary

- $\mathcal{M}^{*} \Longleftrightarrow \overline{\mathcal{H}}$-null
- If X is \mathcal{M}^{*} and $f: 2^{\omega} \rightarrow 2^{\omega}$, then $f(X)$ is \mathcal{M}^{*}.

Corollary

$$
\mathcal{M}^{*} \Longrightarrow \mathcal{E}^{*}
$$

$$
\mathcal{N}^{*} \Longrightarrow\left(\mathrm{~T}^{\prime}\right) \Longrightarrow \mathcal{M}^{*} \Longrightarrow \mathcal{E}^{*} \Longrightarrow \mathcal{S N}
$$

Corollary

 $(\mathrm{CH}) \mathcal{E}^{*} \nRightarrow\left(\mathrm{~T}^{\prime}\right)$```
M
- \(\mathcal{M}^{*}: \quad \overline{\mathcal{H}}^{1}(X \times E)=0\) for all \(E \in \mathcal{E}\)
- \(\mathcal{E}^{*}: \overline{\mathcal{H}}^{1}(X+E)=0\) for all \(E \in \mathcal{E}\)
```

```
M
- \(\mathcal{M}^{*}: \overline{\mathcal{H}}^{1}(X \times E)=0\) for all \(E \in \mathcal{E}\)
- \(\mathcal{E}^{*}: \overline{\mathcal{H}}^{1}(X+E)=0\) for all \(E \in \mathcal{E}\)
```


## Question

 $\mathcal{E}^{*} \Longleftrightarrow \mathcal{M}^{*}$ ???$$
T:\left\{\begin{array}{l}
2^{\omega} \rightarrow[0,1] \\
x \mapsto \frac{1}{2} \sum 2^{-n} x(n)
\end{array}\right.
$$

$$
T:\left\{\begin{array}{l}
2^{\omega} \rightarrow[0,1] \\
x \mapsto \frac{1}{2} \sum 2^{-n} x(n)
\end{array}\right.
$$

## Proposition

- $X$ is $\overline{\mathcal{H}}$-null $\Longleftrightarrow T(X)$ is $\overline{\mathcal{H}}$-null
- (Weiss 2009) $X$ is $\mathcal{M}^{*} \Longleftrightarrow T(X)$ is $\mathcal{M}^{*}$

$$
T:\left\{\begin{array}{l}
2^{\omega} \rightarrow[0,1] \\
x \mapsto \frac{1}{2} \sum 2^{-n} x(n)
\end{array}\right.
$$

## Proposition

- $X$ is $\overline{\mathcal{H}}$-null $\Longleftrightarrow T(X)$ is $\overline{\mathcal{H}}$-null
- (Weiss 2009) $X$ is $\mathcal{M}^{*} \Longleftrightarrow T(X)$ is $\mathcal{M}^{*}$


## Theorem $(X \subseteq \mathbb{R})$

$\overline{\mathcal{H}}$-null $\Longleftrightarrow \mathcal{M}^{*} \Longleftrightarrow \mathcal{M}^{\sharp} \Longrightarrow \mathcal{E}^{\sharp} \Longrightarrow \mathcal{E}^{*}$

## Products

## Theorem

- $\overline{\mathcal{H}}$-null $\times \overline{\mathcal{H}}$-null is $\overline{\mathcal{H}}$-null
- $\overline{\mathcal{H}}$-null $\times \mathcal{H}$-null is $\mathcal{H}$-null [Strengthens Scheepers' Theorem]


## Products

## Theorem

- $\overline{\mathcal{H}}$-null $\times \overline{\mathcal{H}}$-null is $\overline{\mathcal{H}}$-null
- $\overline{\mathcal{H}}$-null $\times \mathcal{H}$-null is $\mathcal{H}$-null [Strengthens Scheepers' Theorem]


## Corollary

- $X, Y \subseteq \mathbb{R}$ are $\mathcal{M}^{*} \Longrightarrow X \times Y$ is $\mathcal{M}^{*}$
- $X \subseteq \mathbb{R}^{n}$ is $\mathcal{M}^{*} \Longleftrightarrow$ all projections of $X$ are $\mathcal{M}^{*}$
- Hausdorff dimension $\operatorname{dim}_{\mathrm{H}} X \ldots \mathcal{H}$-null
- Upper Hausdorff dimension $\overline{\operatorname{dim}}_{H} X \ldots \overline{\mathcal{H}}$-null
- Hausdorff dimension $\operatorname{dim}_{H} X \ldots \mathcal{H}$-null
- Upper Hausdorff dimension $\overline{\operatorname{dim}}_{\mathrm{H}} X \ldots \overline{\mathcal{H}}$-null
- Directed lower packing dimension $\xrightarrow{\operatorname{dim}_{P}} X \ldots \xrightarrow{\mathcal{P}}$-null
- Upper packing dimension $\overline{\operatorname{dim}_{P}} X \ldots \overline{\mathcal{P}}$-null
- Hausdorff dimension $\operatorname{dim}_{H} X \ldots \mathcal{H}$-null
- Upper Hausdorff dimension $\overline{\operatorname{dim}}_{\mathrm{H}} X \ldots \overline{\mathcal{H}}$-null
- Directed lower packing dimension $\xrightarrow{\operatorname{dim}_{P}} X \ldots \xrightarrow{\mathcal{P}}$-null
- Upper packing dimension $\overline{\operatorname{dim}}_{P} X \ldots \overline{\mathcal{P}}$-null

$$
\overline{\operatorname{dim}}_{\mathrm{P}} X \geqslant \underset{\longrightarrow}{\operatorname{dim}} X \geqslant \overline{\operatorname{dim}}_{\mathrm{H}} X \geqslant \operatorname{dim}_{\mathrm{H}} X
$$

## Packing dimensions

- Hausdorff dimension $\operatorname{dim}_{H} X \ldots \mathcal{H}$-null
- Upper Hausdorff dimension $\overline{\operatorname{dim}}_{\mathrm{H}} X \ldots \overline{\mathcal{H}}$-null
- Directed lower packing dimension $\xrightarrow{\operatorname{dim}} P X \ldots \xrightarrow{\mathcal{P}}$-null
- Upper packing dimension $\overline{\operatorname{dim}_{P}} X \ldots \overline{\mathcal{P}}$-null

$$
\overline{\operatorname{dim}}_{\mathrm{P}} X \geqslant \underset{\longrightarrow}{\operatorname{dim}} X \geqslant \overline{\operatorname{dim}}_{\mathrm{H}} X \geqslant \operatorname{dim}_{\mathrm{H}} X
$$

## Theorem

| $\overline{\mathcal{P}}$-null | $\underline{\mathcal{P} \text {-null }}$ | $\overline{\mathcal{H}}$-null | $\mathcal{H}$-null |
| :---: | :---: | :---: | :---: |
| 1 | \# | 1 | 介 |
| $\mathcal{N}^{*}$ | ( $\mathrm{T}^{\prime}$ ) | $\mathcal{M}^{*}$ | SN |

## Packing dimensions

- Hausdorff dimension $\operatorname{dim}_{H} X \ldots \mathcal{H}$-null
- Upper Hausdorff dimension $\overline{\operatorname{dim}}_{\mathrm{H}} X \ldots \overline{\mathcal{H}}$-null
- Directed lower packing dimension $\underset{\longrightarrow}{\operatorname{dimp}} X \ldots \xrightarrow{\mathcal{P}}$-null
- Upper packing dimension $\overline{\operatorname{dim}_{P}} X \ldots \overline{\mathcal{P}}$-null

$$
\operatorname{\operatorname {dim}}_{\mathrm{P}} X \geqslant \underset{\mathrm{\operatorname{dim}}}{\mathrm{P}} \text { } X \geqslant \operatorname{\operatorname {dim}}_{\mathrm{H}} X \geqslant \operatorname{dim}_{\mathrm{H}} X
$$

## Theorem



## Packing dimensions

- Hausdorff dimension $\operatorname{dim}_{H} X \ldots \mathcal{H}$-null
- Upper Hausdorff dimension $\overline{\operatorname{dim}}_{\mathrm{H}} X \ldots \overline{\mathcal{H}}$-null
- Directed lower packing dimension $\xrightarrow{\operatorname{dim}_{P}} X \ldots \xrightarrow{\mathcal{P}}$-null
- Upper packing dimension $\overline{\operatorname{dim}_{P}} X \ldots \overline{\mathcal{P}}$-null

$$
\operatorname{\operatorname {dim}}_{\mathrm{P}} X \geqslant \underset{\mathrm{\operatorname{dim}}}{\mathrm{P}} \text { } X \geqslant \operatorname{\operatorname {dim}}_{\mathrm{H}} X \geqslant \operatorname{dim}_{\mathrm{H}} X
$$

## Theorem

| $\overline{\mathcal{P}}$-null | $\Longrightarrow$ | $\xrightarrow{\mathcal{P} \text {-null }}$ | $\Longrightarrow$ | $\overline{\mathcal{H}}$-null | " | $\mathcal{H}$-nul | | |
|---|---|---|---|---|---|---|---|---|
| 介 |  | \\| |  | § |  | \\| |
| $\mathcal{N}^{*}$ | $\Longrightarrow$ | ( $\mathrm{T}^{\prime}$ ) | $\Longrightarrow$ | $\mathcal{M}^{*}$ | $\Longrightarrow$ | SN |

## Definition

$X$ is topologically $\mathcal{H}$-null $\stackrel{\text { def }}{\equiv} \operatorname{dim}_{\mathrm{H}} f(X)$ for each continuous $f$.

## Definition

$X$ is topologically $\mathcal{H}$-null $\stackrel{\text { def }}{\equiv} \operatorname{dim}_{\mathrm{H}} f(X)$ for each continuous $f$.

## Theorem

- topologically $\mathcal{H}$-null $\Longleftrightarrow$ Rothberger property
- topologically $\overline{\mathcal{H}}$-null $\Longleftrightarrow$ Gerlits-Nagy property


## Definition

$X$ is topologically $\mathcal{H}$-null $\stackrel{\text { def }}{\equiv} \operatorname{dim}_{\mathrm{H}} f(X)$ for each continuous $f$.

## Theorem

- topologically $\mathcal{H}$-null $\Longleftrightarrow$ Rothberger property
- topologically $\overline{\mathcal{H}}$-null $\Longleftrightarrow$ Gerlits-Nagy property
- topologically $\mathcal{P}$-null $\Longleftarrow$ strong $\gamma$-set


## Definition

$X$ is topologically $\mathcal{H}$-null $\stackrel{\text { def }}{\equiv} \operatorname{dim}_{\mathrm{H}} f(X)$ for each continuous $f$.

## Theorem

- topologically $\mathcal{H}$-null $\Longleftrightarrow$ Rothberger property
- topologically $\overline{\mathcal{H}}$-null $\Longleftrightarrow$ Gerlits-Nagy property
- topologically $\mathcal{P}$-null $\Longleftarrow$ strong $\gamma$-set
- but consistently topologically $\mathcal{P}$-null $\nRightarrow$ strong $\gamma$-set


